Combinatorial proofs of Ramanujan's 11 summation and the q-Gauss summation

نویسنده

  • Ae Ja Yee
چکیده

Theorems in the theory of partitions are closely related to basic hypergeometric series. Some identities arising in basic hypergeometric series can be interpreted in the theory of partitions using Fpartitions. In this paper, Ramanujan’s 1ψ1 summation and the q-Gauss summation are established combinatorially.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

q–GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS

where |c/(ab)| < 1. Gauss’s name is attached to this theorem, because it is the qanalogue of Gauss’s summation for ordinary or Gaussian hypergeometric series. The theorem (1.1) was however first discovered by E. Heine [8] in 1847. We only know of two proofs of (1.1) up to recent times. The first proof, due to Heine [8], uses what we now call Heine’s transformation, and this proof can be found i...

متن کامل

Frobenius Partitions and the Combinatorics of Ramanujan's Summation

We examine the combinatorial significance of Ramanujan’s famous summation. In particular, we prove bijectively a partition theoretic identity which implies the summation formula.

متن کامل

Curious Extensions of Ramanujan ’ s

We deduce new q-series identities by applying inverse relations to certain identities for basic hypergeometric series. The identities obtained themselves do not belong to the hierarchy of basic hypergeomet-ric series. We extend two of our identities, by analytic continuation, to bilateral summation formulae which contain Ramanujan's 1 ψ 1 summation and a very-well-poised 4 ψ 6 summation as spec...

متن کامل

Three-square Theorem as an Application of Andrews Identity

where df{n) denotes the number of divisors of n, d = i (mod 4). In literature there are several proofs of (1) and (2). For instance, M. D. Hirschhorn [7; 8] proved (1) and (2) using Jacobi's triple product identity. S. Bhargava & Chandrashekar Adiga [4] have proved (1) and (2) as a consequence of Ramanujan's ^ summation formula [10]. Recently R. Askey [2] has proved (1) and also derived a formu...

متن کامل

Six Proofs for an Identity of the Lah Numbers

In the paper, utilizing respectively the induction, a generating function of the Lah numbers, the Chu-Vandermonde summation formula, an inversion formula, the Gauss hypergeometric series, and two generating functions of Stirling numbers of the first kind, the authors collect and provide six proofs for an identity of the Lah numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2004